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CORRESPONDENCE BETWEEN THE TIME~ AND CRITICALITY=-

EIGENVALUE PROBLEMS FOR A BARE-SLAB REACTOR

by

W. L. Hendry

ABSTRACT

The time- and criticality-eigenvalue problems are
discussed, and a correspondence between time and crit-
icality eigenvalues {and eigenfunctions) is established,
The "critical flux" and lowest time eigenfunction are
shown to be positive, and the associated eigenvalues are

shown to be simple.

I. INTRODUCTION

Hundreds of papers have been published which
present analytical studies of the neutron transport
equation for idealized nuclear reactor models.l In
the inevitable conflict between tractability and gen-
erality, the one-velocity, bare, homogeneous-slab
This is the only

model that retains continuous space, angle, and time

model has frequently been chosen.

dependence, and is at the same time almost completely
understood. The omission of energy dependence is
unfortunate, but is at least consistent with the cur-
rent tendency among writers of transport codes to
put primary emphasis on refinements in the treatment
of the space and angle variables, and to carry energy
dependence along by the multigroup approximation.

In seying that the transport equation for a slab
is "almost completely understood,” we mean that most
of the importent facts exist in the literature. Ac-
tually, it seems that relatively few reactor physi-
cists avail themselves of this information. The
purpose of this note is to mention briefly some of
the important work that has been done on this prob-
lem, and to apply it to a discussion of the associ-
ation between the criticality- and time-eigenvalue
problems,

II., PREVIOUS WORK ON TRANSPORT IN A BARE SLAB
The first (and most) important analysis ap-
peared in two papers by Lehner and Wing,2’3

also be found in Wing's book.h

and may
Lehner and Wing
found the spectrum of the transport operator, proved
the existence and uniqueness of the solution to the
initiel-value problem, and displayed the general
form that this solution takes,
these papers is the fact that the proofs of the

A characteristic of

various theorems contain a great deal of information
that the authors did not choose to state formally.
The result is, of course, that these facts are not
very well known,

The work of Lehner and Wing gave a nearly com-
plete mathematical resolution of the initial-value
problem, but it did not offer a convenient basis for
computations. Moreover, it was difficult to see how
the standard approximate solutions, such as that
given by diffusion theory, differed from the exact
solution, Progress in this direction had to await
the development of & new tool, Case's method of sin-
gular eigenfunctions.s’6
Cage's method and the abstract results of Lehner and
Wing, Bowden and Williams completed the analysis of
the initial-value problem.! They showed that

Using e combination of



asymptotic diffusion theory provided & lowest order
approximation to the exact solution, demonstrated
how the solution could be consistently improved, amd
developed algorithms by which the eigenfunctions
and eigenvalues could be calculated.

In another application of Case's method, Mitsis
solved the critical problem for & slab.8’9 Again,
the rigorous foundation for Mitsis' results is to
be found in the work of Lehner and Wing, although
As in the
time-dependent problem, asymptotic diffusion theory

Mitsis made no reference to those papers.

was shown to be a natural lowest order approxima-
tion, and ways in which this approximation could be
improved were indicated.

In the years since the above works, meny ex-
tensions have appeared, Inhomogeneous cross sec-
tions, anisotropic scattering, several energy groups,
and various boundary conditions have all been
treated with various degrees of success and rigor.
Of special note is Kaper's inclusion of delayed
neutrons in the time-dependent problem.lo As a
rule, significant departures from the simple prob-
lem posed by Lehner and Wing yield a drastic re-
duction in the number of results obtained, and those
results that are obtained are no longer very "nice,"
Unfortunately, only the nice resultis are easily re-
membered and readily used to bolster the physicist's

understanding of real systems.

III. EIGENVALUE PROBLEMS

Consider a glab extending from -a to +a& on the
Let the mean
number of secondary neutrons emitted per collision
be denoted by c, and put the velocity and total
cross section equal to unity. Define the follcwiqg

x-axig, and surrounded by vacuum,

operators:

o= ow o v s (1)
+1

sy = [ L (%) du. (2)

Physically, the criticality problem is to find the
smallest number, c, and the corresponding every-
where-positive flux, ¢{x,un), such that

(L+58)k =0, (3)

subject to the boundary conditions

()

o(+a,u) = o, 13 § 0.

This leads us to the "criticality-eigenvalue" prob-
lem, Find eigenvalues 7n and corresponding none
trivial eigenfunctions Q)n(x,u) such that

. 7n N
(L+35 8k, =0, (5)
subject to
wn(*a)l*) =0, upSo. (6)

The initial-value problem is to find the flux
¥(x,u,t) satisfying the equation

.

% = L¢ + % Sy, (7)
subject t; the boundary condition

v(2a,u,t) = 0, usSo t 2 o,. (8)
and the initial condition

¥(x,1,0) = £(x,n), (9)

where £ is required to satisfy the same boundary
condition as ¥. If we put

;(X’M;X) = J(‘O e-)‘t ﬁ(x,u,t)dt, (lO)

then a Laplace transformation of Eq. (7) yields

(L+%S);=)\;-f.' (1)
This leads us to the "time-eigenvalue"” problem.
Find eigenvalues kn and corresponding-nontrivial
eigenfunctions Xn(x,u) such that

~ e

(L + 5 8%, = \X,» (12)

subject to . '

. .

X (#8,1) = O, - (13)

uSo.
To be precise, we need to introduce a function
space, together with gpecifications for the domains

of our operators. However, to avoid introducing



too much technical jargon at this point, we defer
this to the last section, where it is needed in the
proof of a theorem., Here we proceed formally, and
simply inform the mathematically minded reader that
the justifications for our statements are to be
found (sometimes implicitly) in Ref, 4. For our
present purposes, let it suffice to say that our
underlying space is & Hilbert space, H, of functions
that are square-integrable in the two variables
(x,u). Note that this space is selected for mathe
ematical convenience, rather than physical appro-
priateness, Physically, it would make more sense
to demand that our functions be merely integrable,
because it is only integrals of the flux weighted
with cross sections that are ever observed.

To study the criticality-eigenvalue problem,
it is convenient to put

+1

o (x) =~r

n c’!n(X,U-)du- = swn. (lh)

Using Eq. (5), it is easy to solve for o in terms

of ¢
n

~

n X
"ﬁn(x;u) = T

. o@l-(ey)/ub (vidy, w Zo.

+a (15)

Integrating this equation over p yields, after some

manipulations,
7n r‘B-
o) = 38 [ Ey(IxyDeoy(v)ay, (16)
where
_z
- rl et
B () = 5w, (17)

is the exponential integrel of the first kind.
Lehner and Wing showed that the kernel El is square=~
integrable and positive definite. It f.‘ollowsll that
there exists & denumerable infinity of positive
eigenvalues,

0<y, <7

o S, S eees (18)

1
and eigenfunctions, e , satisfying Eq. (16). From
Eqs. (14) and (15) it follows that there is & one-
to-one correspondence between the pn and the wn.

The criticality-eigenvalue problem, Eqs. (5) and

(6), is therefore resolved. (Methods for computing
the eigenvalues and eigenfunctions have been given
vy Mitsis.e) We note in passing that while the p
are complete in £2[-a,+a], the functions o ere not
complete in 3.12 Going back to our original phys-
ical problem, Eqs. (3) and (4), we see that it re~
mains to show that the eigenvalue 70 is simple,
that is, the inequality 70 < 71 is strict: 70 < 71.
Further, we want to show that the unique eigen-
function ©

(o]
theorems such as this have been proven for a great

can be chosen nonnegative. Pogitivity

many reactor models, but & fairly extensive search
failed to turn up the result for a bare slab.
Therefore the theorem, which is an easy corollary
to a known theorem in mathematics, is proven in the
next section. For the remainder of this section,
we shall assume the validity of this fact: the
eigenvalue 70 ig simple, O < %o < 7y, and the cor-
responding unique eigenfunction cen be chosen non-
negative.

Now the criticality problem, Eqs. (3) and (4),
is resolved, One chooses ¢ = 7oe

The time-eigenvalue problem has been discussed
in detail by Lehner and wing.2’3’h Rather than
simply stating their results, we reproduce part of
their argument here, because it will be needed in
establishing the desired association between the
critical- and time-eigenvalue problems. Lehner and
Wing deal with a slightly different operator from
our L, but we will restate their results so that
they apply here, First, they show that there are
regions of the complex A-plane in which the eigen-
values cannot lie, There can be no eigenvalues to
the left of the line Rek = -1, and no eigenvalue
can have an imaginary part different from zero.
Moreover, A = =1 cannot be an eigenvalue, Thus,
all eigenvalues must lie on the real axis to the
right of the point A = -1,

As in the case of criticality eigenvalues, it
is useful to firsgt convert the system, Eqs. (12)
and (13), to an integral equation. The result is

a
wn(x) = % f . El[(l + ln)lx - y]]wn(Y)dy; (19)

where we have put

+1
w (x) = J‘l X, (1) dute (20)



To find those values of )‘n for which Eq. (19) has
nontrivial solutions, it is convenient to study an
suxiliary problem., For fixed B > O, find those
eigenvalues, Op? for which

a
oulnlx) = [ B(Blx - v (v, (21)
has nontriviel solutions Cn. The kernel is again
square-integrable and positive definite, and there
exist a denumerable infinity of positive eigen-
values,

0<g

0 =9

1 S0, S eee s (22)
Again, as is shown in the next section, the second
inequality is strict:

9 <93+ (23)

Lehner and Wing were able to discuss the behavior
of the o, a8 functions of 8 > 0 quite thoroughly.
They showed that gy = +© as B -0 and o, = kn with
0 <kn<~, as B -0 forn >0, As B — = on-'o
for every n. Between these two limits, all the ¢
are strictly decreasing functions of 8, This is
pictured in Fig. 1. Also pictured in Fig. 1 is a
graphical method of determining the )‘n' Because ¢

n

is fixed, one merely draws e horizontel line &
distance 2/c above the B axis. The intercepts with
the graphs of the o, yield values of B for which
nontrivial solutions exist for a given c¢. Call
these Bn. Then,

xn =8 -1 (2b4)

o

Fig. 1. Determination of time eigenvalues,

Note that for any ¢ > O there will be only a finite
number of )Ln'a. Lehner and Wing also proved that
the half-pleane, Rel < -1, is continuous spectrum.
Thus, as ¢ increases, eigenvalues "emerge" from the
continuous spectrum and then move to the right
along the real axis,

Now we show that there is a kind of one-to-one
correspondence between the time eigenvalues and the
criticality eigenvalues. Referring to Fig. 1, we
see that for very small ¢ > 0 there will be only
one time eigenvalue, )\o, lying just to the right
of A = «1 in the complex A plane., As c increasges
go will )‘O , and it will eventually take the value
zero, We state that the corresponding value of ¢
will then be just 70, the lowest criticality eigen-
value, If not, we would have either 0 < ¢ < 7o ©Or
7, <c. In the former case, Eq. (12) would have a
nontrivial solution with its RHS equal to zero,
implying & criticality eigenvalue of less than )‘0 )
which is impossible. In the latter case, Eq. (5)
would have & nontrivial solution with )‘0 <0, im-
plying a time eigenvalue greater than )‘0’ again
impossible, We also have

Polx) = wy(x), (25)

when )‘0 = O, Hence, owing to the one-to-one cor-
respondence between on and Py and between w and
Xn’

0o(%,1) = Xp(x,u), (26)

when )‘0 = 0,
Increasing ¢ still further, and with similar
reasoning for )‘l’ X2, «sey etc,, we find that Xn

is zero when ¢ = 7n, and that
o (x) = w (x), (27)
‘pn(x’l") = xn(x:il); (28)

when )‘n = 0. (If two or more eigenvalues are equel,
the validity of these equations depends on our hav-
ing made the same ordering of criticality and time
eigenfunctions.) Of course, as )‘n moves to the
right of A = O, these equalities will no longer be
valid,



IV. PROOFS

We can no longer avoid a careful statement con-
cerning our space, and the domains of our operators
in the space,

Let ¥ be the Hilbert space of complex-valued
functions f(z,u) defined and Lebesque square-in-
tegrable over the rectangle (x|-a < x s +a}x

’(u\-l Sy €41}, Define the inner product of two
elements f,g in ¥ by the relation
a +1

(f,8) = [ ax |
-8 =1

d £(x,u)g(x,u) (29)

(the bar means complex conjugation), and define the

norm of f by

"N:(nﬂt (30)
Put
B=1+ ;9 S. (31)

The domain of the operator B, #(B), is & linear
manifold of functions f(z,u) in ¥ satisfying the
following conditions.

1. f(z,n) is absolutely continuous in z for

every u € [-1,+1] and 3f/3z € H.
2. f(z,u) is integragle in y for every
z € [-a,+a) and [ fau € H.

3. f(za,y) = O for u-> 0.

Now we can state and prove the theorem mentioned in
the last section.

THEOREM. The equation Bep = O has one, and
only one, solution @, € #(B). This function can be
chosen everywhere nonnegative, and is then positive
almost everywhere,
proof. We stated in the last section that the
functions mn(x,p) were in one-to-one correspondence
with the function on(x), satisfying Eq. (16). Given
0, We may recover © using Eq. (15). To go from
Eq. (5) to Eq. (16) via Eq. (15) rigorously requires
some attention to details, including & justification
of a change of order in an iterated integral. We
omit these details here, because Wingh has given
them in only slightly different notation.

Therefore we shall begin by showing that the
smellest eigenvalue, Yo of Eq. (15) is simple, and
the corresponding eigenfunction, po, is everywhere

positive, To do this we use an extension of
Jentsch's theorem on integral equations with
positive kernels.13 This extension states that if
our kernel is measurable and square-integrable,
and if for each € > O there exists an integer N =
N(e) such thet the iterated kernel K(N)(x,y) takes
the value zero on & set of measure not greater
than €, then the following are true. The integral
equation has a unique nonnegative eigenfunction,
the corresponding eigenvalue is less in modulus
than any other eigenvalue, the eigenfunction is
positive almost everywhere, and the eigenvalue is
simple,

That El(lx - y|) is measurable and square-
23 The
second condition is easily verified by putting N =
1 and noting that Egl) = El is everywhere posgitive
(see Eq. (17) with z >0).

Therefore the conclusions of the theorem of
Krein and Rutmen hold for oo(x), Yo+
can show that po(x) is everywhere positive. This

integrable was shown by Lehner and Wing.

In fact, one

is shown by proving that oo(x) is continuous, The
proof follows from the fact that the singularity
in El is only logarithmic; although easy, it is a
little long in its details and is omitted here,
With oo(x) positive, it follows from Eq. {15) that
mo(x,u) is nonnegative., (It tekes the value zero
according to Eq. (13).) The function mo(x,u) is
then positive almost everywhere, because the set
{(x,u) ln = 0JU((x,u) |x = 2a) is of (plane) measure
Zero.

COROLLARY, When c = 7o the eigenvelue XO in
Eq, (12) is equal to zero, xl > xo, and the eigen-
function Xo(x,u) can be chosen nonnegative., It is
then positive almost everywhere,
proof. Thisg follows from the correspondence estab-
lished in the last section, Eq. (26).
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